
Advanced Programming (C++)

BY

Dr. EMAD SAMI

http://www.bu.edu.eg/staff/emadattwa3

Course Chapters

1. Introduction

2. Variables and Constants

3. Expressions and Statements

4. Loops and Decisions

5. Functions

6. Arrays and Strings

7. Pointers

8. Miscellaneous

5. Functions

Chapter Objectives:
5-1 What is a Function?

5-1-1 Function Declaration (or Function Prototype)

5-1-2 Function Calling

5-1-3 Function Definition

5-2 Function Declaration Types

5-2-1 Receives & Returns 5-2-2 Receives & NOT Returns

5-2-3 NOT Receives but Returns 5-2-4 NOT Receives & NOT Returns

5-3 Examples

5-4 Keyword (typedef)

5-5 Local Variables

5-6 Scope Variables

5-7 Global Variables

5-8 Special Topics About Functions

5-8-1 Overloaded (polymorphism) Function 5-8-2 Default Variables

5-8-3 Inline Functions 5-8-4 Static Variables

5-9 Assignment (5)

5-1 What is a function?
• A function is a group of statements into a unit and gives it

a name. This unit can then be called from other parts of the
program.

• Every C++ program has at least one function, main ().
• If you want to construct a program to do some thing (e.g.,

calculate the factorial of a number) using this chapter, then your
program must have two function types: main () and factorial ().

• The functions are come in two types: User-defined type and
Built-in type.

• User-defined function: is the function type that is made by the
user to do some task.

• Built-in function: is a part of your compiler package. They are
supplied by the manufacturer for your use.

• The function parts to use it in C++ code:
5-1-1 function declaration (prototype)
5-1-2 function call
5-1-3 function definition

5-1 What is a function?
• Here is an example to show how to use function in C++ code:
• FacFunc.cpp

5-1-1 Function Declaration (or Function Prototype)
• From our example:

• Function declaration is a statement and commonly used at the
begging of the C++ code.

• It consists of function’s return type, name and parameter type list.

• Return type: the result number is a type of int variable.
• Function name: a suggested name express the aim of the

mathematical calculations.
• Parameter type list: is the list of parameters (here are int

type) that the user will enter to the doc screen when ask
about it.

5-1-2 Function Calling
• From our example:

• Function calling is a statement ends with a semicolon and put
inside the main () block function.

• Commonly, the function calling statement before it we use cin
statement but after it we use cout statement.

5-1-3 Function Definition
• From our example:

• The function definition consists of declarator followed by the
function body (which is the actual code of the function).

• FacFunc.cpp

5-2 Function Declaration Types
• There are four function declaration types:

5-2-1 Receives & Returns
e.g.,

5-2-2 Receives & NOT Returns
e.g.,

5-2-3 NOT Receives but Returns
e.g.,

5-2-4 NOT Receives & NOT Returns
e.g.,

5-3 Examples
• Write a program to calculate room area using functions.
• RoomArea.cpp

5-3 Examples …
• Write a program to show maximum of three input numbers using

functions.
• MaxFunc.cpp

5-4 Keyword (typedef)
• It is become tedious and a source of errors to keep writing

unsigned short int. C++ enables you to create an abbreviation
for this phrase by using the keyword typedef, which stands for
type definition. The keyword typedef is used as follows:

5-4 Keyword (typedef) …
• Write a program to calculate room area using functions (also use

the keyword typedef)
• RoomArea2.cpp

5-5 Local Variables
• “Any variable declared in a certain function is local to that

function”.
• For example as in the following code:

• From the code:
Length, Width, Area …….. are local variables to main ()
L, W, A ………………….. are local variables to RoomArea()

5-5 Local Variables …
• Write a C++ program to convert from degree Fahrenhiet to

degree Centegrade using function. [Cen = (Fer-32)*5/9]
• FarCen.cpp

5-6 Scope Variables
• “the variable which is declared in a block of code. It is accessed

only in that block of that code”.
• ScopeVariable.cpp

*The variable max is defined in the scope of the main ()
function, but outside the main it is not known”.
*the variables i, j are defined only in the scope of for block.

5-7 Global Variables
• “the variable can be accessed any where in all functions and the

main function”.
• GlobalVariable.cpp

• The variables X, Y are defined in any where in the previous
program.

5-8 Special Topics About Functions
5-8-1 Overloaded (polymorphism) Functions
5-8-2 Default Arguments
5-8-3 Inline Functions
5-8-4 Static Variables

5-8-1 Overloaded (polymorphism) Functions

• Note: polymorphism: the word poly means many, and the word
morph means forms.

• C++ enables you to create more than one function with the same
name. This is called function overloading. The function must
differ in number of parameter, types of parameters or both. Here
is an example;

• The function MyFunction () is overloaded with three different
parameter lists.

• The return types can be the same or different in overloaded
function.

• You should note that a two functions with the same name and
parameter list, but different return types, generate a compiler
error.

5-8-1 Overloaded (polymorphism) Functions …
• Here is a program to illustrate overloaded functions.
• Overloaded.cpp

*In the function call: repchar()
the compiler chooses the first function to
execute because it has no argument.
the program displays a line of 10 times of *.

*In the function call: repchar(‘?’)
the compiler chooses the second function to
execute because it has one argument of type
char.
the program displays a line of 10 times of ?.

*In the function call: repchar(‘#’,10)
the compiler chooses the third function to
execute because it has two arguments (one
of type char and the other of type int).
the program displays a line of 10 times of #.
Argument means a piece of data (for
example, int value)

5-8-2 Default Arguments
• If no data is passed to the function during calling function, the

function variables take the default values.
• Default.cpp

• In the 1st call: repchar() ….. The compiler finds two arguments
missing and takes them equal to the default values.

• In the 2nd call: repchar(‘?’) ….. The compiler finds one argument
missing (it assumes that the last argument which is the missed). So it
takes the default value of 10.

• In the 3rd call: repchar(‘#’,10) ….. The compiler finds no arguments
are missing. So the default values are not be used.

5-8-3 Inline Functions
• The compiler makes one copy of the function in the RAM. We

call the function many times, it calls the copy of RAM and
execute it, then returns the data to the main () function, and my
be called another times.

• It takes small space of memory but large time to executed and
repeated.

• If the function is very large we make it normal (one copy) in
RAM. But if it is very small we make it Inline function (many
copies) in RAM to save time of program running neglecting the
space of RAM.

5-8-3 Inline Functions …
• Here is a program to demonstrate the Inline function.
• InlineFunc.cpp

• The function large () is declared as inline function in the
statement: inline int large (int num); it takes int value and returns
int value.

5-8-4 Static Variables
• Sometimes we need variables which keep in existence after the

function returns. Thus, a static variable is only visible inside the
function in which it is defined but it remains in existence for the
life of the program.

• i.e.: The static variables in a certain function remains after the
function is called (not initialized again). If it is called another
time the old values still exist.

• Static variables are used when it is necessary for a function to
remember a value from one call to another.

• Note: static variable has the visibility of a local variable but the
lifetime of a global variable.

5-8-4 Static Variables ..
• StaticVariable.cpp

